MATRICES WORKSHEET

1. The 2 × 2 matrix *C* is defined, in terms of a scalar constant *k*, by $C = \begin{pmatrix} 3 & k \\ 6 & 4 \end{pmatrix}$. Determine the value of *k*,

given that the matrix C is singular.

- 2. Given the matrix $W = \begin{pmatrix} 3 & 6 \\ -2 & 5 \end{pmatrix}$, determine
 - (i) the 2 × 2 matrix L such that $W + L = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 - (ii) the 2 × 2 matrix *P* such that $WP = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 3. Calculate the value of *x* and the value of *y* in the matrix equation below. $\begin{pmatrix} 1 & 5 \\ 2 & y \end{pmatrix} \begin{pmatrix} -4 & 1 \\ 2 & 9 \end{pmatrix} = \begin{pmatrix} x & 46 \\ 6 & 65 \end{pmatrix}$
- 4. Three matrices are given as follows: $P = \begin{pmatrix} -1 & 2 \\ 0 & 5 \end{pmatrix}, Q = \begin{pmatrix} a \\ b \end{pmatrix}$ and $R = \begin{pmatrix} 11 \\ 15 \end{pmatrix}$
 - (i) Using a calculation to support your answer, explain whether matrix *P* is a singular or a non-singular matrix.
 - (ii) Given that PQ = R, determine the values of *a* and *b*.

(iii)State the reason why the matrix product QP is not possible.

- 5. The matrices *A* and *B* are given as $A = \begin{pmatrix} -1 & 0 \\ 3 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} -3 & 2 \\ 1 & 1 \\ 4 & 6 \end{pmatrix}$.
 - (i) Determine A^{-1} , the inverse of A.
 - (ii) Show that $A^{-1}A = I$, the identity matrix.
 - (iii) Determine the matrix A^2 .
 - (iv) (a) Explain why the matrix product AB is NOT possible.
 - (b) Without calculating, state the order of the matrix product BA.
- 6. The matrix *M* is defined as $M = \begin{pmatrix} 2p & -3 \\ 4 & 1 \end{pmatrix}$. Determine the value of *p* for which the matrix *M* is singular.
- 7. *A* and *B* re two 2 × 2 matrices such that $A = \begin{pmatrix} 1 & 2 \\ -4 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & -1 \\ 0 & 3 \end{pmatrix}$.
 - (i) Calculate 2A + B.
 - (ii) Determine B^{-1} , the inverse of B.

(iii)Given that $\begin{pmatrix} 5 & -1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$, calculate the values of x and y.

8. *L* and *M* are two matrices where $L = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$ and $M = \begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix}$. Evaluate

(i)
$$L + 2M$$

9. The matrix, Q, is such that $Q = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix}$

(i) Find Q^{-1}

(ii) Using a matrix method, find the values of *x* and *y* in the equation $\begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ 3 \end{pmatrix}$

(ii) *LM*

10. *L* and *N* are two matrices where $L = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$ and $N = \begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix}$. Evaluate $L - N^2$.

11. The matrix, *M*, is given as $M = \begin{pmatrix} x & 12 \\ 3 & x \end{pmatrix}$. Calculate the values of *x* for which *M* is singular.

12. Calculate the matrix product 3*A B*, where $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$.

13. *A*, *B* and *C* are matrices such that: $A = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ y \\ -2 \end{pmatrix}$ and $C = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$. Given that AB = C,

calculate the values of *x* and *y*.

- 14. Given that $R = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$
 - (i) Show that *R* is non-singular.
 - (ii) Find R^{-1} , the inverse of R
 - (iii) Show that $RR^{-1} = I$

(iv)Using a matrix method, solve the pair of simultaneous equation

2x - y = 0x + 3y = 7

ANSWERS

1. k = 22. (i) $L = \begin{pmatrix} -3 & -6 \\ 2 & -5 \end{pmatrix}$ (ii) $P = \frac{1}{27} \begin{pmatrix} 5 & -6 \\ 2 & 3 \end{pmatrix}$ 3. x = 6, y = 7(ii) a = -5, b = 3 (iii) Number of columns in $Q \neq$ Number or rows in P 4. (i) Non-singular 5. (i) $\frac{1}{-2} \begin{pmatrix} 2 & 0 \\ -3 & -1 \end{pmatrix}$ (ii) (iii) $\begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix}$ (iv) (a) Number of columns in $A \neq$ Number or rows in B(b) 3 × 2 6. p = -67. (i) $\begin{pmatrix} 7 & 3 \\ -8 & 9 \end{pmatrix}$ (ii) $\frac{1}{15} \begin{pmatrix} 3 & 1 \\ 0 & 5 \end{pmatrix}$ (iii) x = 2, y = 18. (i) $\begin{pmatrix} 1 & 8 \\ 1 & 8 \end{pmatrix}$ (ii) $\begin{pmatrix} -3 & 13 \\ -1 & 11 \end{pmatrix}$ 9. (i) $\frac{1}{2} \begin{pmatrix} 1 & -2 \\ -1 & 4 \end{pmatrix}$ (ii) x = 1, y = 210. $\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$ 11. $x = \pm 6$ 12. $\begin{pmatrix} 21 & 54 \\ 15 & 42 \end{pmatrix}$ 13. x = 4, y = 314. (i) |R| = 7 (ii) $\frac{1}{7} \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$ (iii) (iv) x = 1, y = 2